Structure and dynamics of model pore insertion into a membrane.

نویسندگان

  • Carlos F Lopez
  • Steve O Nielsen
  • Bernd Ensing
  • Preston B Moore
  • Michael L Klein
چکیده

A cylindrical transmembrane molecule is constructed by linking hydrophobic sites selected from a coarse grain model. The resulting hollow tube assembly serves as a representation of a transmembrane channel, pore, or a carbon nanotube. The interactions of a coarse grain di-myristoyl-phosphatidyl-choline hydrated bilayer with both a purely hydrophobic tube and a tube with hydrophilic caps are studied. The hydrophobic tube rotates in the membrane and becomes blocked by lipid tails after a few tens of nanoseconds. The hydrophilic sites of the capped tube stabilize it by anchoring the tube in the lipid headgroup/water interfacial region of each membrane leaflet. The capped tube remains free of lipid tails. The capped tube spontaneously conducts coarse grain water sites; the free-energy profile of this process is calculated using three different methods and is compared to the barrier for water permeation through the lipid bilayer. Spontaneous tube insertion into an undisturbed lipid bilayer is also studied, which we reported briefly in a previous publication. The hydrophobic tube submerges into the membrane core in a carpetlike manner. The capped tube laterally fuses with the closest leaflet, and then, after plunging into the membrane interior, rotates to assume a transbilayer orientation. Two lipids become trapped at the end of the tube as it penetrates the membrane. The hydrophilic headgroups of these lipids associate with the lower tube cap and assist the tube in crossing the interior of the membrane. When the rotation is complete these lipids detach from the tube caps and fuse with the lower leaflet lipids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Nanofiltration for ‎Concentrated Electrolyte Solutions using ‎Linearized Transport Pore Model

   In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

A New Model for Pore Formation by Cholesterol-Dependent Cytolysins

Cholesterol Dependent Cytolysins (CDCs) are important bacterial virulence factors that form large (200-300 Å) membrane embedded pores in target cells. Currently, insights from X-ray crystallography, biophysical and single particle cryo-Electron Microscopy (cryo-EM) experiments suggest that soluble monomers first interact with the membrane surface via a C-terminal Immunoglobulin-like domain (Ig;...

متن کامل

Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane

In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...

متن کامل

Molecular dynamics simulation of polymer insertion into lipid bilayers

Relatively short peptides, such as toxins and antimicrobial-peptides, are known to insert themselves into cell membranes. On the basis of simple bead-spring models for the membrane lipids, the peptide, and water, detailed processes of the peptide insertion is investigated by molecular dynamics simulation; our special concern is in the highly cooperative motions of membrane lipids and the peptid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2005